Identification of Biomarkers for Defense Response to Plasmopara viticola in a Resistant Grape Variety
نویسندگان
چکیده
Downy mildew (Plasmopara viticola) is one of the most destructive diseases of the cultivated species Vitis vinifera. The use of resistant varieties, originally derived from backcrosses of North American Vitis spp., is a promising solution to reduce disease damage in the vineyards. To shed light on the type and the timing of pathogen-triggered resistance, this work aimed at discovering biomarkers for the defense response in the resistant variety Bianca, using leaf discs after inoculation with a suspension of P. viticola. We investigated primary and secondary metabolism at 12, 24, 48, and 96 h post-inoculation (hpi). We used methods of identification and quantification for lipids (LC-MS/MS), phenols (LC-MS/MS), primary compounds (GC-MS), and semi-quantification for volatile compounds (GC-MS). We were able to identify and quantify or semi-quantify 176 metabolites, among which 53 were modulated in response to pathogen infection. The earliest changes occurred in primary metabolism at 24-48 hpi and involved lipid compounds, specifically unsaturated fatty acid and ceramide; amino acids, in particular proline; and some acids and sugars. At 48 hpi, we also found changes in volatile compounds and accumulation of benzaldehyde, a promoter of salicylic acid-mediated defense. Secondary metabolism was strongly induced only at later stages. The classes of compounds that increased at 96 hpi included phenylpropanoids, flavonols, stilbenes, and stilbenoids. Among stilbenoids we found an accumulation of ampelopsin H + vaticanol C, pallidol, ampelopsin D + quadrangularin A, Z-miyabenol C, and α-viniferin in inoculated samples. Some of these compounds are known as phytoalexins, while others are novel biomarkers for the defense response in Bianca. This work highlighted some important aspects of the host response to P. viticola in a commercial variety under controlled conditions, providing biomarkers for a better understanding of the mechanism of plant defense and a potential application in field studies of resistant varieties.
منابع مشابه
Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola
Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigat...
متن کاملRevisiting Vitis vinifera Subtilase Gene Family: A Possible Role in Grapevine Resistance against Plasmopara viticola
Subtilisin-like proteases, also known as subtilases, are a very diverse family of serine peptidases present in many organisms. In grapevine, there are hints of the involvement of subtilases in defense mechanisms, but their role is not yet understood. The first characterization of the subtilase gene family was performed in 2014. However, simultaneously, the grapevine genome was re-annotated and ...
متن کاملThe effectiveness of stilbenes in resistant Vitaceae: ultrastructural and biochemical events during Plasmopara viticola infection process.
Leaves of different Vitis vinifera L. cultivars, susceptible or resistant to downy mildew, Chasselas, Solaris, IRAC 2091 (cvs. Gamaret x Bronner) and Muscadinia rotundifolia were inoculated with Plasmopara viticola. Samples were then examined by scanning and transmission electron microscopy, by light microscopy and for their ability to synthesise stilbenes. These phytoalexins were strictly anal...
متن کاملAutomated DNA Extraction from Plants
Tecan Journal 3/2003 4 www.tecan.com Research on plant diseases Downy mildew, caused by the oomycete Plasmopara viticola, is one of the most important grape (Vitis vinifera) diseases, which needs to be controlled by preventive fungicide application to reduce its erratic appearance and high reproduction potential. One of the research areas of the group of Cesare Gessler at the Institute of Plant...
متن کاملLinking Jasmonic Acid to Grapevine Resistance against the Biotrophic Oomycete Plasmopara viticola
Plant resistance to biotrophic pathogens is classically believed to be mediated through salicylic acid (SA) signaling leading to hypersensitive response followed by the establishment of Systemic Acquired Resistance. Jasmonic acid (JA) signaling has extensively been associated to the defense against necrotrophic pathogens and insects inducing the accumulation of secondary metabolites and PR prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017